

Advanced Blade Technology Developments

Presented by

Tom Ashwill

The Technology Transfer Conduit:

From Enabling Research to Commercial Product

Commercial Product

LWST Contracts

Research Contracts and Testing

Enabling Research – Tools, Information, and Concepts

Blade Reter LWST Goals

2002 --- Identified Technologies to Meet LWST Cost Goals

Blade-related Technologies

Advanced rotors and controls

Manufacturing improvements

TOTAL ESTIMATED REDUCTIONS for all technologies

 $-15\% \pm 7\%$

 $-7\% \pm 3\%$

 $-44\% \pm 32\%$

2003-04 --- Transformed into Specific TIO's and into Tracking System

Advanced (Enlarged Rotor)

- Advanced Materials
- Changed/improved structural/aero design
- Active controls
- Passive controls
- Higher tip speed ratios/lower acoustics

Manufacturing

- Manufacturing methods
- Manufacturing mark-ups
- Lower margins

Blade Developments through Research and Industry Contracts

Advances Coming out of WindPACT and Blade Research

Active devices

Advances Coming out of WindPACT and Blade Research

Very thick airfoils

Truncated airfoils

Advances Coming out of Materials Research and WindPACT

Carbon Coupon Tests

New Forms – Large & Medium Carbon Tows

Advances Coming out of Materials Research and WindPACT

Fatigue Characterization

Blade-Related Fabrication Contracts and New Technologies

- WindPACT (BSDS Blade Fabrication)
 - 9-m integrated blade design
 - Truncated airfoils
 - Constant thickness & width carbon spar cap
- LWST Phase I System
 - Clipper Not a blade development (off-the-shelf, perhaps)
 - GE Sub-scale carbon demonstration & full scale blade (carbon)
 - **◆ NPS Possible blade development**
- LWST Phase II Components (\$2 million each)
 - **◆** Knight & Carver 25m carbon & sweep twist
 - ◆ GE subscale article carbon, bend-twist, innovative internal architecture for off-shore blade
 - ◆ TPI 44m with carbon and bend-twist

Blade-Related Contracts & New Technologies

- Carbon-Hybrid Blade Developments (Enabling Research)
 - ◆ CX-100 & TX-100 carbon, bend-twist, constant spar cap thickness
- SBIR (Carbon in Blades)
 - ◆ GEC/TPI 29m demonstrator with carbon, bend-twist
 - 3Tex 3D braided materials
 - Wetzel carbon, manufacturing process (details are proprietary)

• DWT

- Applied Sciences carbon & process (HCBMP)
- Stoddard new materials & process (RIM panels bonded to carbon spar)
- **◆** Wetzel 7m, carbon, bend-twist (details are proprietary)

Validation Loop for Design, Models & Manufacturing Process

CX & TX Testing Will Support Validation Loop

- Basic Blade Mass Properties & CG Measurements at TPI Composites
- Detailed Blade Mass Properties Measurements at SNL
- Full Blade Modal Test (SNL, NREL & Bushland, TX)
- Full Blade Static Test (NREL)
- Full Blade Fatigue Test (NREL)
- NDT (SNL)
- Twist Measurements (TPI, NREL)
- Blade Loads Field Test (Bushland, TX)
- Power Curve Field Test (Bushland, TX)

CX-100 & TX-100 Research Blades

- Both 9-m for flight testing at Amarillo
- GX-100 glass baseline (paper only)
- CX-100 carbon spar cap, glass skins & web, infusion, balsa core
- TX-100 carbon fibers in skin @ 20° (triax) & glass spar cap, balsa core

TX-100 Design Concept to Induce Twist-Bend Coupling

CX-100 - Gel Coat in Mold

CX-100 Blade Lay-up & Root Build-up

Infusion Equipment & Shear Web (CX-100)

Spar Cap with Balsa and Stud Cavities (CX-100)

CX-100 Blade Shells

CX-100 Shells Ready for Bonding

TX-100 Lay-up & Infusion

TX-100 Carbon Tri-ax & Glass Spar-Cap

Adios!!

